The generator matrix 1 0 0 0 1 1 1 1 3X 1 2X 1 X 1 2X+2 X 1 3X 1 1 X 1 2X 2X+2 1 1 0 1 1 1 X 1 X 2X 1 0 1 0 0 0 2X 2X+3 3X+1 1 1 3X X+3 1 3X+2 1 0 3X 1 X+1 3X 2 2X+1 1 1 3X+3 X+3 X 3 2X+2 3X+1 1 1 1 3X+2 3X 0 0 1 0 1 X+2 2X+2 3X X 1 1 X+1 X+3 1 X+3 1 X+3 3X+2 X+1 X+2 3X 3X+1 X+3 3X+2 2X 3X 1 X 2X+1 2X+3 3X+3 X+3 2 2X+2 X 0 0 0 1 1 X+1 3X+3 2X X+1 3X+2 3X+3 X+3 3 2 X+2 2X+2 2X+3 0 3X X+2 1 2X+1 0 2X+3 X 2X+3 X+2 3X+3 2X+2 X+2 X+3 2 3 1 2X+2 0 0 0 0 2X 0 0 0 0 0 0 0 0 0 0 0 0 2X 2X 2X 2X 2X 2X 2X 2X 2X 2X 2X 2X 0 2X 0 2X 2X 0 generates a code of length 35 over Z4[X]/(X^2+2X+2) who´s minimum homogenous weight is 29. Homogenous weight enumerator: w(x)=1x^0+262x^29+1689x^30+4346x^31+8671x^32+16020x^33+21444x^34+26000x^35+21685x^36+16370x^37+8635x^38+3898x^39+1506x^40+400x^41+102x^42+28x^43+9x^44+4x^45+2x^46 The gray image is a code over GF(2) with n=280, k=17 and d=116. This code was found by Heurico 1.16 in 70.4 seconds.